Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Endocrinol ; 256(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36327153

RESUMO

Biologic sex influences the development of cardiovascular disease and modifies aldosterone (ALDO) and blood pressure (BP) phenotypes: females secrete more ALDO, and their adrenal glomerulosa cell is more sensitive to stimulation. Lysine-specific demethylase 1 (LSD1) variants in Africans and LSD1 deficiency in mice are associated with BP and/or ALDO phenotypes. This study, in 18- and 40-week-old wild type (WT) and LSD1+/- mice, was designed to determine whether (1) sex modifies ALDO biosynthetic enzymes; (2) LSD1 deficiency disrupts the effect of sex on these enzymes; (3) within each genotype, there is a positive relationship between ALDO biosynthesis (proximate phenotype), plasma ALDO (intermediate phenotype) and BP levels (distant phenotype); and (4) sex and LSD1 genotype interact on these phenotypes. In WT mice, female sex increases the expression of early enzymes in ALDO biosynthesis but not ALDO levels or systolic blood pressure (SBP). However, enzyme expressions are shifted downward in LSD1+/- females vs males, so that early enzyme levels are similar but the late enzymes are substantially lower. In both age groups, LSD1 deficiency modifies the adrenal enzyme expressions, circulating ALDO levels, and SBP in a sex-specific manner. Finally, significant sex/LSD1 genotype interactions modulate the three phenotypes in mice. In conclusion, biologic sex in mice interacts with LSD1 deficiency to modify several phenotypes: (1) proximal (ALDO biosynthetic enzymes); (2) intermediate (circulating ALDO); and (3) distant (SBP). These results provide entry to better understand the roles of biological sex and LSD1 in (1) hypertension heterogeneity and (2) providing more personalized treatment.


Assuntos
Hipertensão , Lisina , Masculino , Feminino , Camundongos , Animais , Lisina/metabolismo , Lisina/farmacologia , Aldosterona/metabolismo , Pressão Sanguínea , Hipertensão/metabolismo , Zona Glomerulosa/metabolismo
2.
Hypertension ; 75(4): 1045-1053, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32160100

RESUMO

LSD1 (lysine-specific demethylase-1) is an epigenetic regulator of gene transcription. LSD1 risk allele in humans and LSD1 deficiency (LSD1+/-) in mice confer increasing salt-sensitivity of blood pressure with age, which evolves into salt-sensitive hypertension in older individuals. However, the mechanism underlying the relationship between LSD1 and salt-sensitivity of blood pressure remains elusive. Here, we show that LSD1 genotype (in humans) and LSD1 deficiency (in mice) lead to similar associations with increased blood pressure and urine potassium levels but with decreased aldosterone levels during a liberal salt diet. Thus, we hypothesized that LSD1 deficiency leads to an MR (mineralocorticoid receptor)-dependent hypertensive state. Yet, further studies in LSD1+/- mice treated with the MR antagonist eplerenone demonstrate that hypertension, kaliuria, and albuminuria are substantially improved, suggesting that the ligand-independent activation of the MR is the underlying cause of this LSD1 deficiency-mediated phenotype. Indeed, while MR and epithelial sodium channel expression levels were increased in LSD1+/- mouse kidney tissues, aldosterone secretion from LSD1+/- glomerulosa cells was significantly lower. Collectively, these data establish that LSD1 deficiency leads to an inappropriate activation and increased levels of the MR during a liberal salt regimen and suggest that inhibiting the MR pathway is a useful strategy for treatment of hypertension in human LSD1 risk allele carriers.


Assuntos
Pressão Sanguínea/genética , Histona Desmetilases/genética , Receptores de Mineralocorticoides/metabolismo , Transdução de Sinais/genética , Aldosterona/sangue , Alelos , Animais , Pressão Sanguínea/efeitos dos fármacos , Epigênese Genética , Eplerenona/farmacologia , Histona Desmetilases/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Camundongos , Camundongos Knockout , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Mutação , Potássio/urina , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...